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Abstract Interactions between the soil, the vegetation, and the atmospheric boundary layer require
close attention when predicting water fluxes in the hydrogeosystem, agricultural systems, weather, and cli-
mate. However, land-surface schemes used in large-scale models continue to show deficiencies in consis-
tently simulating fluxes of water and energy from the subsurface through vegetation layers to the
atmosphere. In this study, the multiphysics version of the Noah land-surface model (Noah-MP) was used to
identify the processes, which are most crucial for a simultaneous simulation of water and heat fluxes
between land surface and the lower atmosphere. Comprehensive field data sets of latent and sensible heat
fluxes, ground heat flux, soil moisture, and leaf area index from two contrasting field sites in South-West
Germany are used to assess the accuracy of simulations. It is shown that an adequate representation of
vegetation-related processes is the most important control for a consistent simulation of energy and water
fluxes in the soil-plant-atmosphere system. In particular, using a newly implemented submodule to simulate
root growth dynamics has enhanced the performance of Noah-MP. We conclude that further advances in
the representation of leaf area dynamics and root/soil moisture interactions are the most promising starting
points for improving the simulation of feedbacks between the subsoil, land surface and atmosphere in fully
coupled hydrological and atmospheric models.

1. Introduction

A detailed understanding of the interactions between soil, vegetation, and the atmospheric boundary layer
is a prerequisite for predicting the effects of land use and climate change on hydrological systems. To better
understand the complex interplay of the involved processes, many numerical and physics-based land-sur-
face models (LSMs) have been developed during the last decades [Sellers et al., 1986; Chen and Dudhia,
2001; Kothavala et al., 2005; Krinner et al., 2005; Oleson et al., 2008; Bonan et al., 2011; Niu et al., 2011]. LSMs
are used in hydrological studies at catchment and river basin scale [Lohmann et al., 1998; Maxwell and Miller,
2005; Grasselt et al., 2008; Rosero et al., 2011; Wolf, 2011], and in regional and global-scale hydrological stud-
ies [Wood et al., 1998; Yang et al., 2011], climate studies [Koster et al., 2006; Hohenegger et al., 2009; Breuer
et al., 2012; Dirmeyer, 2013; Greve et al., 2013], and climate impact studies [Aurbacher et al., 2013; Challinor
et al., 2013]. In particular, analyzing feedback processes in the soil-plant-atmosphere continuum requires a
consistent description of the fluxes of water, energy, and carbon within and between the different compo-
nents of coupled models [Santanello et al., 2011]. However, considerable deficiencies in land-surface models
in simultaneously simulating soil moisture, water fluxes, heat, and their mutual relations in the soil-plant
continuum have been identified [Dirmeyer et al., 2006; Koster et al., 2006; Warrach-Sagi et al., 2008; Niu et al.,
2011; Gayler et al., 2013]. Thus, further improvement of land-surface models remains a major challenge.

A typical way to improve LSMs is to replace existing representations of biogeophysical processes with more
advanced ones. With respect to vegetation processes, more detailed process representations can be
adopted from field-scale crop and forest models, which typically have a greater emphasis on seasonal
dynamics of root and leaf development than land-surface models, which are designed primarily for
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large-scale applications. In particular, root water uptake is often poorly represented in LSMs [Overgaard
et al., 2006]. Gayler et al. [2013] showed that simplifications in the representation of root growth and root
water uptake in the Community Land Model CLM 3.5 result in poor simulations of the dynamic and vertical
distribution of soil moisture. Shortcomings of land-surface models can also be ameliorated by introducing
additional processes, if poor simulations can be attributed to the absence of these processes. The latter way
was for example pursued by Noblet-Ducoudr�e et al. [2004], who coupled the agronomy model STICS to the
soil-vegetation-transfer scheme ORCHIDEE. The purpose of the latter study was to investigate the influence
of croplands on the European carbon and water budgets.

A multitude of process parameterization options exists for the different biogeophysical processes simulated
in land-surface models. In many cases, there is no clear reason for preferring one process representation
over another. Often it is questionable whether improving the representation of a single process will also
improve overall performance of a LSM, because undesirable interactions of parameters in the new scheme
with ones in existing schemes of the LSM may occur [Niu et al., 2011]. Moreover, when used coupled to an
atmospheric model, changes in a LSM may have considerable impacts on the coupling with the atmosphere
via parameterizations of the atmospheric surface layer. Aside from ambiguous decision about the overall
model structure during the process of model development, the error associated with alternative representa-
tions of the individual process is a major contributor to structural model uncertainty [Clark et al., 2011a].
The level of this uncertainty can be quite large and even greater than the uncertainty associated with input
and parameter uncertainty [Ajami et al., 2007]. Consequently, to quantify uncertainty in simulations of bio-
geophysical processes, multimodel or multiphysics approaches are needed in addition to techniques based
on parameter perturbation.

Working with multimodel ensembles has a long tradition in climate research. It is increasingly becoming
a common practice also in studies of the impact of climate change on hydrology and agroecosystems
[Challinor et al., 2013]. However, multimodel and multiphysics ensembles are more accustomed to
assessing uncertainties in the climate forcing than to quantifying structural uncertainty in simulation
schemes for simulating biogeophysical processes [Hemming et al., 2013; H€oglind et al., 2013]. Only a few
multimodel studies have been conducted to investigate the structural uncertainty of LSMs [Yang et al.,
2011; Zhou et al., 2012]. The necessity of multimodel studies is also in the focus of ecophysiological
research [R€otter et al., 2011; Rosenzweig et al., 2013]. The importance of structural model uncertainty in
the modeling of agroecosystems under future climate conditions was addressed within the scope of the
Wheat Pilot Study of the Agricultural Model Intercomparison and Improvement Project (AgMIP). In a
study with 27 crop models, it was shown that the uncertainty in climate change projections of wheat
yields was greater due to variations among models than to variations in the forcing provided by differ-
ent climate models [Asseng et al., 2013]. The impact of different complexity in representing crop growth
of five coupled soil-plant models and of the Community Land Model (CLM 3.5) on the simultaneous sim-
ulation of soil moisture, evapotranspiration, and leaf area index at plot scale was recently analyzed by
W€ohling et al. [2013].

To enhance the realism of biophysical and hydrological processes in the community land-surface model
Noah, this model was recently enhanced by the addition of a multioptions framework that allows the
user to select between different submodules for individual processes [Niu et al., 2011]. The new version of
the model is called Noah-MP (multiphysics). However, vegetation dynamics are still poorly represented. In
previous studies, we found that the simulation of root growth and activity enhances the performance of
coupled land-surface models and soil-vegetation models [Gayler et al., 2013; W€ohling et al., 2013]. We
therefore extended the multioptions framework of Noah-MP with a new option that allows for the simula-
tion of root growth of crops. In this study, we evaluate the potential of the new option to improve the
performance of a Noah-MP multiphysics ensemble to simulate water and energy fluxes across the land
surface at two contrasting agricultural field sites in South-West Germany. For this, we selected a multitude
of combinations of alternative representations of the most critical processes that affect land-surface
fluxes and soil moisture dynamics. We evaluated Noah-MP in the 1-D stand alone mode, i.e., without cou-
pling to an atmospheric model. Instead, the atmospheric forcing is provided by measured time series of
the relevant atmospheric data. Testing the performance of LSMs at the plot scale and driven by experi-
mental climate data is a common practice, because the data needed for model evaluation can be gath-
ered with relatively high accuracy and in high-temporal resolution [Dirmeyer et al., 2006; Sch€adler, 2007;
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Mahecha et al., 2010; Ingwersen et al., 2011]. Simulation results are compared with eddy covariance (EC)
measurements of turbulent fluxes of water and energy, measurements of ground heat flux, and time
series of soil moisture at different depths. The aims of the study are (i) to assemble the most appropriate
combinations of process parameterizations in the Noah-MP model to simultaneously match the different
components of the water and energy cycle at the field sites under consideration, (ii) to test the perform-
ance with the new root growth option and to identify further processes the modeling of which is most
promising for model improvement, (iii) to recognize inconsistencies in the model structure and how they
are affected by the new root growth option, (iv) to analyze whether the results found at one site are trans-
ferable to another, and (v) to estimate uncertainties in model predictions originating from alternative sub-
models available in Noah-MP.

2. Materials and Methods

2.1. Field Data
Plot-scale data on soil moisture, ground heat flux (GHF), latent heat flux (LHF), and sensible heat fluxes
(SHF), and leaf area development were recorded during the 2009 vegetation period at two open and flat
agricultural fields sites in South-West Germany. The two study sites in the Kraichgau (48.9�N and 8.7�E,
319 m a.s.l.) and Swabian Alb (48.5�N and 9.8�E, 690 m a.s.l.) differ in terms of both their soils and climatic
conditions. The Kraichgau is a fertile hilly loess region, characterized by a mild climate with comparatively
high temperatures and moderate precipitation (mean annual: temperature 9.3�C, precipitation 777 mm)
and intensive agricultural land use with high crop yields. The Swabian Alb is a mountain plateau with
extensive agricultural land use. Its climate is distinctly colder and wetter (mean annual: temperature
6.5�C, precipitation 962 mm). The two agricultural fields (EC1, Kraichgau, 15 ha, and EC6, Swabian Alb, 13
ha) presented here are managed and operated by local farmers. The soil at EC1 is a Stagnic Anthrosol
[IUSS Working Group WRB, 2007] on a loess layer of several meters depth. Winter wheat (Triticum aestivum
cv. Cubus) was sown on 7 November 2008 and harvested on 6 August 2009 at grain maturity. EC6 is char-
acterized by a shallow and rendzic Leptosol [IUSS Working Group WRB, 2007] with a solum depth of 0.2–
0.3 m. On 7 October 2008 winter wheat (cv. Hermann) was sown. Harvest took place at 24 August 2009.
On each of the fields, five subplots of 4 m2 were randomly selected in early spring 2009 and permanently
marked to track crop performance (phenology and leaf area index (LAI)). LAI was measured on each sub-
plot at the central square meter in biweekly intervals until grain maturity using a LAI-2000 Plant Canopy
Analyzer (LI-COR Biosciences Inc., USA). Energy and water fluxes between canopy and atmosphere were
measured with the EC technique. Both stations were equipped with the same set of instruments. The
instrumentation and data processing is described in detail in Ingwersen et al. [2011] and only a summary
is presented here. Each station was equipped with a Licor 7500 open path infrared CO2/H2O gas analyzer
(LI-COR Biosciences Inc., USA) and a CSAT3 3D sonic anemometer (Campbell Scientific Inc., UK). Net radia-
tion was measured with a NR01 4-component sensor (Hukseflux Thermal Sensors, Netherlands) along
with air temperature and humidity (HMP45C, Vaisala Inc., USA). Air temperature, humidity, and rainfall
were measured on site. Rainfall was measured with a 0.2 mm tipping bucket system at about 1 m height
(ARG100, Environmental Measurements LTD, UK). Temperature sensors (Model 107, Campbell Scientific
Inc., UK) were installed close to the station, along with TDR probes, and matric potential sensors. Installa-
tion depths depended on the solum thickness. At EC1, temperature probes were installed at 2, 6, 15, 30,
and 45 cm soil depth and the TDR probes and matric potential sensors at 5, 15, 30, 45, and 75 cm. At EC6,
an installation of sensors below 15 cm was not possible because of the shallow solum. Additionally, at
both stations three soil heat flux plates (HFP01, Huskeflux Thermal Sensors, Netherlands) were installed 8
cm below ground surface. The EC data were logged at 10 Hz resolution. All other sensor data were stored
in 30 min intervals. The EC data were processed using the EC software package TK2 (http://www.bayceer.
uni-bayreuth.de/mm/en/software/software/software_dl.php).

Particularly, in heterogeneous landscapes, the energy fluxes measured by EC-technique do not result in a
closed energy balance. Therefore, measured turbulent flux data must usually be postprocessed to close
the gap. We corrected the EC data assuming that the residual energy entirely consists of sensible heat (H-
correction). The theoretical foundation of the H-correction is discussed in Foken [2008]. Further indica-
tions that this approach is appropriate for this field site were elaborated and discussed by Ingwersen et al.
[2011].
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2.2. Simulation Model
2.2.1. Noah-MP
Noah-MP is one of the land-surface components of the Weather Research & Forecasting model (WRF) since
version 3.4. It is available as a stand-alone 1-D model (Noah-MP v1.1), which we use in offline mode, i.e.,
with atmospheric forcing at a temporal resolution of 30 min obtained from field measurements of short-
wave and longwave radiation, wind speed, temperature, precipitation, relative humidity, and air pressure.
Noah-MP simulates several biophysical and hydrological processes which control LHF and SHF between the
canopy and the atmosphere, GHF, and soil water movement. These processes include leaf area develop-
ment, stomatal conductance, and photosynthesis, surface exchange coefficient for heat, radiation interac-
tions with the vegetation and the soil, as well as the hydrological processes within the canopy and the soil.
Noah-MP provides a multiparameterization framework that allows running the model with different combi-
nations of alternative process schemes for individual processes [Niu et al., 2011]. Alternative submodules for
10 physical processes can be applied for up to 4608 different combinations. Soil water fluxes are calculated
by the Richards equation using a Campbell/Clapp-Hornberger parameterization of the hydraulic functions
[Clapp and Hornberger, 1978]. In the original version of Noah-MP, the root depth and vertical distribution of
roots are assumed to be constant during the entire vegetation period.

2.2.2. New Root Growth Option
For testing the impact of considering the dynamics of root growth on simulation results in this study, an
additional optional submodule was implemented. This new option, which is a simplification of the root
growth module of the crop model SPASS [Wang and Engel, 2000], allows to mimic the increasing extension
of the root system during the growth phase of the crop. Root depth and vertical distribution of root density
are crucial factors in the sink term of the Richards equation. Thus, the new option directly affects soil mois-
ture simulations. Moreover, root depth is linked to the calculation of the soil moisture factor controlling sto-
matal resistance (BTR).

The increase of the root depth zR (cm) is calculated from the maximum root extension rate under optimum
conditions, rext, max (cm d21), and two reduction factors, 0 � fT � 1 and 0 � fh � 1, taking into account the
impact of unfavorable temperature and soil moisture conditions in the deepest rooted soil layer:

dzR

dt
5rext;max � fT ðzRÞ � fhðzRÞ � 12

zR

zR;max

� �
(1)

where zR, max (cm) is the maximum rooting depth which is either limited by soil profile depth or ecophysio-
logical constraints of the plant. In this study, zR, max was set to 100 cm and 30 cm at EC1 and EC6, respec-
tively. For rext, max, the default value of 2 cm d21 was used [Wang, 1997]. Moreover, with increasing soil
depth an exponential decrease of active root length is assumed in contrast to the uniform distribution of
roots over all rooted soil layers used in the original Noah-MP. Details about fT and fh are presented in
Appendix A.

2.2.3. Plot-Scale Simulations
Vegetation is represented in Noah-MP by vegetation types which differ in their ecophysiological and hydro-
logical properties. To represent the winter wheat considered in this study, we chose the vegetation type
‘‘cropland.’’ Default values of vegetation dynamic and soil parameters are provided in look-up tables. How-
ever, using default values can strongly degrade model performance. Consequently, for running the model
in the mode that requires predefined values of vegetation dynamics, table values of monthly values of LAI
were adjusted to measured time series. Similarly, it has been shown that default values of soil hydraulic
properties can yield biased simulations of the dynamics of soil water movement and of plant available
water [Gayler et al., 2013]. We therefore replaced the default values of soil hydraulic parameters by values
derived from field data by fitting the water retention curve to measured time series of soil moisture and soil
matric potential. For running the model in the mode that requires predefined values of vegetation dynam-
ics, table values of monthly values of LAI were adjusted to measured time series. It should be noted, how-
ever, that the ensemble simulations were also performed with default soil parameters to analyze potential
parameter interdependencies when using different model options. Adjusted and default values of soil
parameters as well as LAI dynamics are presented in Table 1. At EC1 (Kraichgau), the depth of the soil col-
umn was set to 200 cm in the model, divided in four numerical layers of 10, 30, 60, and 100 cm thickness.
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At EC6 (Swabian Alb), a soil column of 30 cm depth was simulated, divided in numerical layers of 5, 7, 9,
and 9 cm thickness. A differentiation of soil hydraulic properties between the single simulation layers is not
possible in Noah-MP.

Simulation runs started on 17 April (EC1) and 1 May (EC6), 1 day after the installation of the meteorological
stations. As high-resolution climatic data are required for the forcing of Noah-MP, no simulation of the early
growth stages of the wheat crop was possible. Simulations were stopped after harvest of winter wheat (6
August at EC1, 31 August at EC6). To analyze model uncertainty originating from alternative process repre-
sentations on simulated fluxes in the soil-vegetation-atmosphere continuum, we set up several realizations
of Noah-MP by substituting and combining individual process options in different ways. From the proc-
esses, for which alternative submodules are available, we selected (1) DEV: dynamic of the aboveground
vegetation, (2) CSR: canopy stomatal resistance, (3) BTR: stomata/soil moisture interaction, (4) RUN: surface
water infiltration and soil lower boundary for water fluxes, (5) SFC: surface exchange coefficient for heat,
(6) RAD: radiation transfer through the vegetation canopy, and (7) RTS: the new option, which considers the
dynamic of root growth. Options that offer different ways of addressing frozen soil or snow cover are not
considered in this study, because daily mean temperatures did not fall below 0�C during the simulation
period. The options used in this study are listed in Table 2. Details on the process descriptions behind the
options 1–6 are described in Niu et al. [2011]. Altogether, 720 combinations of process parameterizations
were investigated. Each simulation run was identically initialized with measured data of soil moisture con-
tent and temperature and LAI.

Table 1. Vegetation and Soil Parameters Used in Ensemble Simulations (Default Values in Parenthesis)

Parameter Soila Description Units EC1 EC6

hmax Max. volumetric soil water m3/m3 0.47 (0.48) 0.48 (0.465)
hwlt Soil moisture at wilting point m3/m3 0.053 (0.084) 0.123 (0.10)
wsat Saturated soil matric potential m 0.42 (0.76) 0.23 (0.26)
b Clapp-Hornberger b 5.0 (5.3) 7.4 (8.2)
Vegetationb

LAI Leaf area index m2/m2 Apr: 1.61 Apr: 1.0
May: 4.51 May: 2.46
Jun: 4.75 Jun: 4.85
Jul: 3.44 Jul: 4.5
Aug: 2.0 Aug: 2.5

aDerived from field measurements of soil moisture and matric potential.
bAdjusted to biweekly field measurements.

Table 2. Noah-MP Options Investigated in This Study

Process Options

DEV: Leaf area development 5 1: LAIa and GVFb predefined (monthly table values)
5 2: Prognostic model for LAI, GVF calculated from LAI
5 3: LAI predefined as in (1), GVF calculated from LAI

CSR: Canopy stomatal resistance 5 1: Ball-Berry, related to photosynthesis [Ball et al., 1987]
5 2: Jarvis-type multiplicative model [Jarvis, 1976]

BTR: Stomata/root/soil
moisture interaction

5 1: Function of soil moisture, like Noah [Chen and Dudhia, 2001]
5 2: Matric potential related, as in CLM [Oleson et al., 2004]
5 3: Matric potential related, as in SSiB [Xue et al., 1991]

RUN: Runoff/soil lower boundary 5 1: TOPMODEL-based runoff/simple groundwater [Niu et al., 2007]
5 2: TOPMODEL-based runoff/equilibrium water table [Niu et al., 2005]
5 3: Infiltration excess based surface runoff/free drainage [Schaake et al., 1996]
5 4: BATS runoff scheme/free drainage [Yang and Dickinson, 1996]

SFC: Surface Exchange
Coefficient for Heat

5 1: Based on Monin-Obukhov similarity theory [Brutsaert, 1982]
5 2: Neglecting the zero displacement height [Chen et al., 1997]

RAD: Radiation transfer through
the vegetation canopy

5 1: Between canopy gap probability depends on 3D canopy structure,
maximum gap 5 1-GVF when the sun is overhead

5 2: Between canopy gap probability 5 0
5 3: Between canopy gap probability 5 1.0–GVF

RTS: Dynamic Roots 5 1: Static roots (original Noah-MP)
5 2: Dynamic roots [Wang, 1997]

aLAI: Leaf area index.
bGVF: Green vegetation fraction.
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2.2.4. Performance Measures
The performance of the individual model realizations was assessed by comparing simulated fluxes of LHF,
SHF, GHF, and soil moisture content in the upper soil layer (SH2O5cm) with field data. High-resolution eddy
flux measurements of LHF and SHF as well as GHF measurements were averaged to weekly mean diurnal
cycles of heat fluxes. Standard deviations were calculated to estimate the variability in the measurements.
Simulation results were aggregated in the same way. Soil moisture measurements were compared every
day at 00:00 h. Nash-Sutcliffe Efficiency (NSE) was used to assess the performance of simulations:

NSE 512

X
Pi2Oið Þ2X
Oi2�Oð Þ2

(2)

where Pi, Oi, and �O are predictions, observations, and the mean of observations, respectively. NSE can range
from 21 to 1. NSE 5 1 corresponds to a perfect match between simulated and observed data. NSE> 0
indicates that the model predictions are more accurate than modeling the mean of the observed data
[Nash and Sutcliffe, 1970]. In addition to the above-mentioned output variables, simulated vertical soil mois-
ture distribution was evaluated by calculating an aggregated NSE of the fits to soil moisture measured at 5,
30, and 75 cm at EC1, and to soil moistures measured at 2.5 cm and 15 cm at EC6.

Substituting one model option for a certain process parameterization with another can have different
effects on model accuracy depending on which combination of options are chosen for the remaining proc-
esses. To obtain a measure that can be used to compare the impact of a single model option on the overall
performance of Noah-MP, for each of the investigated processes i 5 DEV, CSR, BTR, RUN, SFC, RAD, or RTS, a
weighted mean of the variability in the NSE of LHF, SHF, GHF, and SH2O, DNSE i , was defined (3). This
weighted mean of the variability quantifies the shifts in the accuracy of the fits to measured heat fluxes and
soil moisture distribution while changing the model options for a certain process, but at the same time run-
ning the full ensemble for the remaining processes:

DNSE i 5
1
2
jDNSE LHF;i j1jDNSE SHF;i j1jDNSE GHF;i j

3
1jDNSE SH2O;i j

� �
(3)

where DNSE LHF;i ;DNSE SHF;i ;DNSE GHF;i , and DNSE SH2O;i denote the range within which the mean NSEs of
the single observables vary, as the different options for the parameterization of process i are chosen. For
example, DNSE LHF;CSR is the difference between the mean value of latent heat flux performance of all
ensemble members calculating canopy stomatal resistance following ‘‘Ball-Berry’’ and the mean value of
latent heat flux performance of the other ensemble members, which calculate canopy stomatal resistance
following ‘‘Jarvis.’’ In case that three or more options are available for an individual process, the difference
between the best and the worst mean NSE is used.

3. Results and Discussion

3.1. Impact of Model Options
In a first step of the analysis, the impact of the submodel choice on simulation results was investigated. The
aim of this step was to identify the most critical processes for a successful simultaneous simulation of heat
fluxes and soil moisture at both field sites. Moreover, in this step we identified those model options that are
obviously not suitable for simulating water and energy fluxes under the given soil and climatic conditions
in our field experiments. Inappropriate model options or combinations of model options were subsequently
eliminated from the ensemble. The criterion for rejecting an option was a negative mean value of NSE for
any of the four observables LHF, SHF, GHF, or SH2O, averaged over all ensemble members using the respec-
tive option.

The DNSE i values for the seven investigated processes are shown for both field sites in Figure 1. Since
DNSE i measures only the range within which the mean NSEs of the single observables vary, it cannot be
seen from this score whether substituting one option by another results in an increase of the single NSEs or
in a decreasing accordance with measurements. For this, the NSEs of the different ensemble runs with the
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respective option activated or
not have to be compared. This is
exemplarily shown for the two
options of RTS in Figure 2,
whereas notable effects with
respect to the other options are
only discussed in section 3.2.

Clear differences in the model
behavior between the two field
sites can be observed. The most
distinctive effects at the deep
loess site (EC1) can be observed
if options DEV, RTS, and CSR are
varied. At EC6, the highest
DNSE i values are derived when
the different options for RUN,
BTR, or RTS are applied. The
strong variability of the mean

NSE at EC1 when varying DEV arises mainly from an insufficient simulation of LAI development when the
prognostic mode DEV 5 2 is activated. Apparently the dynamic vegetation module is not able to accurately
capture biomass growth at this managed field. The resulting disagreement between observed and pre-
dicted LAI strongly degrades GHF simulations but increases at the same time the fit of simulated soil mois-
ture in the upper 5 cm, which, however, is very low in options DEV 5 1 and DEV 5 3. Both effects together
result in a DNSE DEV 50:24. Despite there being only slightly better agreement between observed and pre-
dicted LAI under option DEV 5 2 at EC6, the impact of poor leaf area simulation on GHF and SH2O5cm is far
less pronounced ðDNSE DEV 50:10Þ. Substituting the multiplicative stomatal resistance model CSR 5 2 by
Jarvis [1976] with the approach by Ball and Berry [Ball et al., 1987], CSR 5 1, increases model accuracy to a
greater extent at EC1 ðDNSE CRS 50:18Þ compared to EC6 ðDNSE CRS 50:07Þ. Similarly, a clear positive effect
of considering the zero-displacement height in estimating the surface exchange coefficient for heat
(SFC 5 1) is only given at EC1, mainly due to a strongly improved simulation of GHF.

At EC6, the biggest impact on model accuracy can be observed if option RUN was changed. In particular
the ‘‘no flux’’ option RUN 5 2 for the lower soil boundary condition results in a very inaccurate simulation of
soil moisture dynamics. This is a reasonable model behavior for a shallow soil over karstic bedrock. Best
results were obtained with the ‘‘free drainage’’ option RUN 5 4. Besides RUN, the option BTR and RTS had
the most pronounced effect on simulation results at this field. In the case of BTR, high values of NSE were
attained with approaches that simulate the effect of soil water availability on stomatal resistance depending
on soil matric potential. Using BTR 5 2 or BTR 5 3 instead of the soil water content related approach
BTR 5 1 increases NSE values of SH2O5cm resulting in a DNSE BRT of 0.20. Incorporating dynamic root growth
has a more pronounced impact on model accuracy at the deeper soil profile in the Kraichgau (EC1) than at
the shallow field in the Swabian Alb (EC6) (Figure 2). At EC6, a clear positive effect of the dynamic root
model can only be observed for the simulation of the vertical distribution of soil moisture (SH2O). The differ-
ences in model behavior are caused by the different depths of the soil profiles. At EC6, when the simulation
started (1 May), most of the shallow soil profile had probably already been entered by roots and only a mar-
ginal further elongation of the root system was possible during the simulation period, because of the lime-
stone under the soil profile beginning at a depth of 20–30 cm. Consequently, the default Noah-MP
assumption of a static root depth was nearly true at this site and only the assumption of an exponential ver-
tical distribution of root length was an advantage of the dynamic root option RTS 5 2 compared to the uni-
form distribution assumed in RTS 5 1. In contrast, at EC1 only a small portion of the deep soil profile was
entered by roots at the beginning of the simulation period (17 April), and the more realistic simulation of
root growth shows a strong positive impact on root water uptake and hence LHF and SHF.

3.2. Analysis of Structural Coherence
Good performance of a model in simulating one or more measured processes may result in poor agreement
to data regarding other processes [W€ohling et al., 2013]. Amongst other potential sources of error, such as

Figure 1. Mean variability in Nash-Sutcliffe Efficiencies achieved by substituting the differ-
ent Noah-MP options at EC1 (black bars) and EC6 (gray bars), respectively.
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errors in measurements of
parameter values or in boundary
conditions, one cause can be
structural incoherences in the
model or inadequate submodels
for single processes. To uncover
possible tradeoffs between differ-
ent state variables in Noah-MP,
the ability of the model to simul-
taneously fit the measurements
of LHF, SHF, GHF, SH2O5cm, and
SH2O was evaluated. This step of
the model analysis was done
with a reduced ensemble, with
those options excluded from the
full ensemble that obviously
result in inadequate simulations
of single observables. The
excluded options were DEV 5 2
at EC1 ðNSE GHF 520:28Þ, and
RUN 5 2 ðNSE SH2O 521:51Þ and
RUN 5 3 ðNSE SH2O 520:34Þ at
EC6, resulting in ensemble sizes
of 576 at EC1 and 360 at EC6.
Cross comparisons of the
observable-specific NSEs for the
individual ensemble members
are summarized for EC1 in
Figure 3 and for EC6 in Figure 4.
The single subplots of these fig-
ures show the relationships
between the NSEs of the individ-
ual ensemble members of each
two output variables. As addi-
tional information, the symbols
in the plots are differentiated by
color corresponding to the fit of
the respective simulation run to
the measured vertical soil mois-

ture distribution. Green, blue, and red symbols indicate the simulations with highest, medium, and lowest
values of NSESH2O, respectively.

Similar, but quite differently pronounced, patterns of the relationships between the individual NSE values
can be observed at both contrasting field sites. Combinations of model options that achieve a good result
for LHF also have high values of NSESHF. The range within which the values of NSELHF and NSESHF vary, how-
ever, is much greater at EC1 than at EC6. At least at EC1, there is also a certain relationship between NSESH2O

and successful simulations of latent and sensible heat. Some of the ensemble members, however, achieve
high values of NSELHF and NSESHF concurrent with poor agreement between measured and observed verti-
cal soil moisture distribution. The new option RTS 5 2 simultaneously has a significant positive effect on
LHF, SHF, and SH2O, but not on GHF. At EC6, there is nearly no impact of soil moisture simulation on the
results achieved for LHF and SHF. Obviously, during the simulation period, the energy fluxes between land
surface and atmosphere were more governed by radiation than by soil moisture, which can be explained
by the high water holding capacity of the loess soil at EC1 and the sufficient precipitation during the vege-
tation period at EC6 (494 mm from 1 May to 31 August). The NSE values achieved for both SH2O5cm and
SH2O are significantly higher at EC6 than at EC1. The reason for this lies in the constraint of Noah-MP that

Figure 2. Mean Nash-Sutcliffe efficiencies of model ensembles at (a) EC1 and (b) EC 6
without (black bars) and with (white bars) consideration of dynamic root growth for
simulated fluxes of latent heat (LHF), sensible heat (SHF), and ground heat (GHF), soil
moisture in the upper 5 cm (SH2O5cm), and soil moisture distribution (SH2O).
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the soil profile is assumed to be homogeneous with regard to its hydraulic functions. Autonomous sets of
parameters for the individual soil layers are not possible in this model. Consequently, at EC1, where the soil
profile is much deeper compared to EC6, there is greater necessity to compromise between the differing
individual relationships of soil moisture and matric potential measured at different soil depth (see section
3.5).

At both field sites, the adequacy of GHF simulations is nearly independent from the accuracy with which
the other output variables are simulated. Amongst the highest values of NSEGHF are ensemble members
which show good, medium, or poor agreement with measurements of soil moisture, LHF, or SHF. Specific
combinations of model options for successful simulation of GHF at EC1 require SFC 5 1 together with
RAD 5 2. Including SFC 5 2, RAD 5 1, or RAD 5 3 are responsible for a splitting of the scatterplots into differ-
ent branches. The same can be observed at EC6, however, this effect is much less pronounced. Moreover, at
EC6, some of the simulations with high values of NSESH2O produce very weak simulations of GHF. This is the
case if the prognostic leaf area module DEV 5 2 is chosen together with the new root module RTS 5 2. Obvi-
ously, in the case of GHF predictions, the more simplified option RTS 5 1 compensates the insufficient LAI
simulations. In contrast, RTS 5 2 has a slightly positive effect on LHF, SHF, and SH2O simulation results. At
both field sites, the strongest compromise between individual model realizations must be made when
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optimizing GHF simulations, because the highest values of NSEGHF go along with weak NSE values of the
other output variables. This behavior of Noah-MP is a clear indication of structural incoherences in the
model in relation to GHF simulations.

3.3. Transferability Between Field Sites
Combinations of model options that result in high NSE values at one field do not necessarily result in accu-
rate simulations at another, particularly if soil and climatic conditions are different. Likewise, substituting a
submodule that improves simulation accuracy at one site may decrease the same at another. We therefore
investigated whether or not ensemble members that provide good results at one field site also do so at the
other location of our study. We therefore calculated averaged NSEs,
NSE all 5

1
4 NSE LHF 1NSE SHF 1NSE GHF 1NSE SH2Oð Þ, for the individual ensemble members and compared

their values obtained at EC1 and EC6. In this exercise, the ensemble size was reduced to 288 considering
only those combinations of model options that were previously not excluded at either of the two field sites.
Figure 5 shows the relationship between the averaged model performances at EC1 and EC6 for different
combinations of model options. Combinations of model options, which are most successful at the one field
site, are also among the most successful model realizations at the other field site. Considering the dynamics
of root growth increases the performance of the model ensemble to match measured energy and water
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fluxes at both field sites (indicated by the closed symbols in Figure 5). However, the benefit of this option
strongly depends on the model options used for the other processes and on the field site. RTS 5 2 increases
model performance at EC1 for all ensemble members. At EC6, a significant increase of NSEall when using
RTS 5 2 instead of RTS 5 1 is only given for BTR 5 1. Interactions and field site dependencies can also be
observed between other physics options. Changing from SFC 5 2 to SFC 5 1 increases the model perform-
ance at EC1 mainly if RTS 5 2 is selected. BTR 51 decreases NSEall at EC6 (mainly if CSR 5 2) but not at EC1.
However, the adverse effect of BTR 5 1 diminishes if RTS 5 2. Choosing CSR 5 1 instead of CSR 5 2 increases
model performance at both sites, if BTR 5 1, but only at EC1, if BTR 5 2 or 3.

A number of 25 simulations simultaneously achieve NSE all>0:50 at EC1 and NSE all>0:65 at EC6. From
these most successful simulations, 20 belong to an ensemble with DEV 5 1 or 3, CSR 5 1, BTR 5 2 or 3, RUN-
5 1 or 4, SFC 5 1, RAD 5 1, 2 or 3, RTS 5 2, which we therefore consider as the most appropriate in our
study (see Table 3). Thus, taking into account some site specific characteristics such as the lower soil bound-
ary conditions, the transferability of the findings from one location to the other was shown in this
experiment.

3.4. Interaction of Parameter Values and Multiphysics Options
The focus of the study was on model uncertainty that arise from alternative representations of individual
model components. However, this is only one of different sources of uncertainty in land-surface models.
Errors in measurements of input data and system responses, uncertainty in the values of parameters used

Figure 5. Relationship between averaged model performances (NSEall) at EC1 and EC6 for different combinations of model options. Each
subplot represents a 12 member ensemble with DEV 5 1 or 3, RAD 5 1, 2, or 3, RTS 5 1 or 2, and the other model options defined in col-
umn and row headers. Open circles: Noah-MP realizations with RTS 5 1; closed circles: Noah-MP realizations with RTS 5 2. NSEall integrates
NSEs of latent heat flux (LHF), sensible heat flux (SHF), ground heat flux (GHF), and soil moisture distribution (SH2O).
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in the individual representations
of physical processes, ambigu-
ities in the overall model struc-
ture, and the interplay of all
these components also contrib-
ute to the total uncertainty of
model predictions [e.g., Clark
et al., 2011a]. Taking all these
possible error sources into
account when searching for the

most appropriate model structure for a given study objective is quite a challenging task. In particular, inad-
equate parameter values in individual submodules, time-dependent parameters or incomplete understand-
ing of physical processes can hamper the evaluation of different schemes. Although some of these issues
are still not completely resolved and there is an ongoing discussion about the most appropriate approaches
to tackle them [Clark et al., 2011a, 2012; Beven et al., 2012], various formal frameworks have been developed
and applied in recent years to test individual model hypotheses (the representation of physical processes)
and to reject models or submodules in complex system models [Beven and Freer, 2001; Clark et al., 2008;
Gupta et al., 2008; Clark et al., 2011b; Fenicia et al., 2011; Gupta et al., 2012; Fenicia et al., 2014]. Though pre-
dominantly applied in catchment hydrology, these frameworks should also be transferable to other fields of
environmental modeling [Clark et al., 2011a]. However, implementing a formal testing framework is very dif-
ficult and time consuming in the context of the complex land-surface model Noah-MP and could not be
attempted within the scope of this study. Nevertheless, also in the simple but structured model selection
strategy of the presented study, the aspect of interactions between parameter values and alternative model
structures could be considered as subsequently explained.

The interplay of parameter values and alternative model structures can play an important role in model the
performance of model simulations and consequently also in the submodule selection process. Previous
research has shown that optimal parameter values for individual submodels vary depending on the choice
of submodels for other processes or on the combination of process representation. W€ohling et al. [2013]
recently investigated the impact of structural model complexity on the performance of five coupled soil-
plant models and the Community Land Model (CLM 3.5) to simultaneously simulate soil moisture, evapo-
transpiration, and leaf area index. In this study, five different crop modules, covering a wide range in the
details of representing crop growth, were coupled to identical soil modules. A large variability in the corre-
sponding soil hydraulic parameter sets that optimize the performance of the individual model realizations
was found. Likewise, in a study with three versions of an earlier version of the Noah model, Rosero et al.
[2010] have found differences in the sensitivity of parameters of submodules and in optimal submodel
parameters between several combinations of model schemes.

Consequently, the optimal combination of physics options as reported in the previous sections may also
depend on the choice of parameter values used in individual submodules. We therefore repeated the analy-
sis of the transferability of findings between EC1 and EC6 (section 3.3) using the default values of soil
hydraulic parameters provided in the lookup tables of Noah-MP instead of the parameter values derived
from field measurements (Table 1). These parameters directly affect soil water movement but also the
stomata-root-soil moisture control BTR [Niu et al., 2011]. This analysis was conducted to exemplarily investi-
gate the interplay between parameter values and model structure in carving out the best combinations of
process representations in our study. The results are summarized in Figure 6 and are subsequently dis-
cussed. Using default parameters strongly degraded model performance at both field sites. At EC1, the aver-
age of NSEall decreases from 0.38 to 0.34 at EC6, and from 0.61 to 0.46 at EC6. This is mainly due to a
significant degradation in the performance of soil moisture simulations, whereas heat flux simulations were
much less affected. The degrading effect of using the default soil parameters is much less pronounced, if
RTS 5 2 is selected. In particular, in this case the split pattern (originating from the strong negative effect of
choosing BTR 51 on simulation results at EC6), is not visible if default soil parameters are used and RTS 5 2.
This example demonstrates how the discovery of structural deficits in a model can depend on both, a suita-
ble combination of physical process representations and the parameter values used in individual
submodules.

Table 3. Mean Values 6 Standard Efficiencies of Nash-Sutcliffe Efficiencies of the
Ensemble (24 Members) Showing Best Performance at EC1 and EC6 (DEV 5 1, 3;
CSR 5 1; BTR 5 2, 3; RUN 5 1, 4; SFC 5 1; RAD 5 1, 2, 3; RTS 5 2)

EC1 EC6

NSELHF 0.76 6 0.01 0.76 6 0.01
NSESHF 0.70 6 0.01 0.61 6 0.01
NSEGHF 0.35 6 0.09 0.79 6 0.03
NSESH2O_5 cm 0.44 6 0.04 0.65 6 0.02
NSESH2O 0.32 6 0.03 0.59 6 0.04
NSEall 0.53 6 0.03 0.69 6 0.02
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In summary of the above, the
main findings of our study are
only marginally affected by the
two different sets of soil parame-
ters. We are aware, though, that
this example can only provide
limited insights into the complex
interplay of parameter values
and submodel choices. A more
comprehensive hypothesis test-
ing framework including optimi-
zation of parameters for each of
the submodule combinations
goes beyond the scope of this
study. Moreover, for practical
applications involving ensembles
with a large number of multiphy-
sics model realizations, the
required data to meaningfully
constrain the parameters and to
analyze parameter correlations in
the various submodules are typi-
cally not available at the required
level of precision and the scale of
interest, which is particularly the
case in large-scale coupled land-
surface schemes.

3.5. Ensemble Simulations
Finally, the uncertainty in model
predictions, which originates
from the alternative modeling
approaches used for the different
submodules was estimated by
the mean values and the 5% and
95% quantiles of soil moisture
and heat flux ensemble simula-
tions. Since a range of different,
nonoptimal but plausible param-
eterization schemes can never-
theless provide meaningful
results, in particular if the ‘‘opti-
mal’’ configuration may vary with
time (e.g., between early devel-
opment stages and the period of
senescence), ensemble simula-
tions with the 288 members
described in the earlier sections
were conducted. For the soil
parameters, the adjusted values
derived from field measurements
were taken. The results of the
ensemble simulations are shown
in Figures 7–10. At EC1, the high

Figure 7. Ensemble means (solid lines) and prediction uncertainties (5–95% quantile
range, shaded regions) of simulated soil moisture dynamics at EC1 at 0–10 cm, 10–40 cm,
and 40–100 cm depth, simulated by the reduced ensemble (288 members). Observations,
symbolized by circles, were made in 5, 30, and 75 cm, respectively.

Figure 6. Summarized relationship between averaged model performance (NSEall) at EC1
and EC6 using default (red) and adjusted (blue) values for soil hydraulic parameters.
Open circles: Noah-MP realizations with RTS 5 1; closed circles: Noah-MP realizations with
RTS 5 2.
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variability in soil moisture obser-
vations in the upper soil layer is
clearly underestimated by the
model, whereas the dynamic in
the deepest soil layer is overesti-
mated. This is possibly caused by
the ‘‘mean parameters’’ that have
to be used for the whole soil col-
umn without differentiation
between individual soil horizons
(see section 3.2. and Figure 7).
The uncertainty in soil moisture
simulations at 5 cm depth is
most pronounced during dry
periods, whereas prolonged pre-
cipitation events narrow the indi-
vidual simulation runs to near
saturation water contents. While
in the upper soil layer the
increase in model uncertainty is
probably caused by differences
in evapotranspiration processes,
which take place at small time
scales, the increasing uncertainty
at 75 cm depth results from an

accumulation of small differences in simulated soil water fluxes. At EC6, soil moisture dynamics in both
layers are better simulated than at EC1 (Figure 8). Obviously, the more shallow soil profile at this field site
can be better represented by a single set of hydraulic parameters. However, absolute values of soil moisture
in the lower soil layer are mostly underestimated, indicating a simulation bias toward excessive drainage. In
this layer, a similar pattern of model uncertainty as in the upper layer of EC1 can be observed. The long dry-
ing out of the soil at the end of the vegetation period reduces the uncertainty in the upper 5 cm but leads
to an increased uncertainty in soil moisture in 12–21 cm depth.

During most of the time, the seasonal dynamic of weekly averaged diurnal cycles of LHF and, with some
restrictions, SHF, can be well simulated at both field sites (Figures 9 and 10). Exceptions are the last 3 weeks
of the growing season at EC1, where plants became senescent. During this period, LHF, which is associated
with water uptake by vegetation, is clearly overestimated while SHF is underestimated. At EC6, in contrast,
LHF and SHF are better matched during senescence. The divergent model behavior at both locations results
from differences in the amount of plant available soil water at the end of the vegetation period. At the
Kraichgau site with deep loess soils (EC1), much more water is stored in the soil compared to the Swabian
Alb location (EC6), where soil depth is only 20–30 cm over a karstic underground and the soil moisture
decreased rapidly at the end of the vegetation period. Reduced evapotranspiration rates during dry soil
periods are well simulated by Noah-MP, but a reduction of transpiration rates, which is caused by a strong
degeneration of the plant hydraulic system during senescence, cannot be reproduced by the model. This
corroborates results obtained by Gayler et al. [2013] in a study on the performance of the community land
model CLM 3.5 compared to simulation results obtained from a crop model with an explicit representation
of root senescence, and by W€ohling et al. [2013] in a multimodel study with four additional soil-plant models
of different complexity. A similar shortcoming concerning vegetation dynamics was also discussed in a
study by Ingwersen et al. [2011] with the land-surface model Noah [Chen and Dudhia, 2001]. Uncertainty
bands around the ensemble mean of LHF and SHF are more pronounced at EC1 than at EC6. This results
mainly from the stronger effect of modeled root growth dynamics on turbulent fluxes at the deep soil loca-
tion (compare 2).

At EC1, GHF is clearly overestimated in the first half of the day during most of the vegetation period (Figure
9). The same can be observed during the last third of the vegetation period at EC6 (Figure 10). The extent of
the deviations between simulations and measurements depends only slightly on the chosen combination

Figure 8. Ensemble means (solid lines) and prediction uncertainties (5–95% quantile
range, shaded regions) of soil moisture dynamics at EC6 at 0–5 cm and 12–21 cm depth,
simulated by the reduced ensemble (288 members). Observations, symbolized by circles,
were made in 2.5 and 15 cm, respectively.
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of submodules, which can be seen on the narrow uncertainty bands around the ensemble mean simula-
tions. Moreover, the simulation results are hardly sensitive to the variation of the soil thermal and hydraulic
parameters used in the soil heat transport equations (not presented here). Thus, the poor performance of
Noah-MP with respect to the GHF simulation in this study cannot be attributed to inadequate parameter
values. Rather, it shows again the structural deficits of the model with respect to GHF.

4. Summary and Conclusions

Many alternative equations are proposed to simulate the biogeophysical processes in the soil-vegetation-
atmosphere, which are most relevant for the exchange of water and energy between the land surface and
the atmosphere. In general, it cannot be decided in advance, which process parameterizations or which
combination of process parameterizations are most appropriate for a given simulation purpose. Conse-
quently, in estimating the uncertainty of simulation results of LSMs, the uncertainty inherent in alternative
parameterization options must be considered as well as the uncertainty in parameter values. In this study,
we used the community land-surface model Noah-MP, which offers a multioption framework with a multi-
tude of exchangeable process representations, to find the most appropriate process parameterizations for
simultaneously simulating soil moisture, ground heat flux as well as the exchange of latent and sensible
heat between the land surface and atmosphere at two contrasting winter wheat fields in South-West Ger-
many. To acknowledge the dynamics of root growth in this study, we enhanced the multioptions

Figure 9. Weekly averaged ensemble simulations (288 members) of diurnal cycles of latent heat (LHF, blue), sensible heat (SHF, red), and ground heat (GHF, green) fluxes during the
growing season 2009 (17 April–6 August at EC1 (Kraichgau) together with observed values (symbols 1 error bars, same colors). Solid lines represent ensemble means, shaded regions
denote the 5–95% quantile range of the ensemble simulations. Error bars symbolize standard deviations resulting from the weekly averaging of observations.
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framework of Noah-MP with a new submodule adapted from the agricultural crop model SPASS [Wang,
1997]. Model uncertainty originating from alternatives in representing physical processes was analyzed via
a multiphysics ensemble approach. Moreover, inconsistencies in the model structure and the transferability
of the findings from one location to the other were investigated.

Figure 10. Weekly averaged ensemble simulations (288 members) of diurnal cycles of latent heat (LHF, blue), sensible heat (SHF, red), and
ground heat (GHF, green) fluxes during the growing season 2009 (1 May–31 August) at EC6 (Swabian Alb) together with observed values
(symbols 1 error bars, same colors). Solid lines represent ensemble means, shaded regions denote the 5–95% quantile range of the
ensemble simulations. Error bars symbolize standard deviations resulting from the weekly averaging of observations.
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Our results show that substituting individual process representations can strongly affect simulation results.
The newly implemented option that allows for the simulation of root growth of crops significantly improved
the performance of the model. However, the way Noah-MP responds to the alternative model options is
quite different between both field sites investigated in this study. This can be partly attributed to differen-
ces in soil properties and soil profile depth at each site. In particular, an inappropriate representation of the
lower boundary condition in the soil water flux module generated faulty results at the Swabian Alb site
where the soil profile is very shallow. This has strong implications for large-scale applications of LSMs,
because information about soil profile depth is much too imprecise or even missing in soil maps typically
used in such studies. Likewise, the differences in model response to considering dynamic of roots originates
from differences in soil depth.

There is no single combination of model options or ‘‘best’’ model, which optimizes all of the considered out-
put variables at the same time. An increasing accuracy of one or more individual output variables by choos-
ing the most appropriate process parameterization with respect to these variables can be accompanied by
decreased accuracy in other output variables. Consequently, a compromise between the individual observ-
ables must be found. The extent of the compromises between latent heat, sensible heat, ground heat, and
soil moisture in our study can be seen from the shape of the scatterplots presented in Figures 3 and 4. For
example, combinations of model options can be found which simultaneously increase the accuracy of latent
and sensible heat flux. Such correlations cannot be found for ground heat flux. Moreover, improving ground
heat flux comes at the expense of soil moisture simulation accuracy, indicating structural deficits in the
model.

Inaccuracies in soil moisture simulations are probably caused by overly simplified representation of the soil
hydraulic properties in Noah-MP, which allows no differentiation between individual soil horizons. This con-
straint has more adverse implications regarding the deep soil profile at the Kraichgau site than the shallow
soil at Swabian Alb. Augmenting the present routine for soil water movement with a more detailed
approach that allows depth-dependent parameterization of the hydraulic functions would probably be one
of the most promising approaches to enhancing the performance of Noah-MP, at least in small-scale stud-
ies, where the required data are available. Nevertheless, in certain situations Noah-MP can provide good
predictions of heat fluxes without necessarily predicting soil moisture accurately. Apparently, there are com-
binations of model options that compensate structural deficits in soil water flux simulations.

Excluding those process parameterizations that are not appropriate for the given site conditions results in a
multiphysics ensemble that is highly transferable between both field sites. In particular, if the newly intro-
duced option ‘‘dynamic roots’’ is activated, ensemble members achieve good performance in simultane-
ously simulating heat fluxes and soil moisture at both field sites. We therefore conclude that considering
root growth dynamics is an important factor at agricultural sites, where annual plants are cultivated. The
robustness of our conclusions was demonstrated, when using default values of soil parameters instead of
values derived from field measurements. Although the model performance degraded at both field sites, the
main findings of our study are only marginally affected.

At least at the Swabian Alb, clear improvements of simulating vertical soil moisture distribution could also be
achieved by substituting the water content-based approach with a matric potential-based approach for esti-
mating the soil moisture/stomata interaction. This process is closely related to root water uptake and the latter
type of parameterization can be seen as more realistic in the sense of root physiology, suggesting the pre-
sumption that more biological realism may improve the performance of LSMs. Insufficient simulation results
were achieved at both locations using the prognostic mode for leaf area development, which was therefore
excluded from the multiphysics ensemble. Clearly, the dynamic submodel of Noah-MP is not able to
adequately simulate phenology of winter cereals, and hence biomass growth, in managed agro-ecosystems in
regions where such crops are prevalent. However, reliable simulation of vegetation responses to changing
temperatures and precipitation is essential if LSMs are used for projections in future climate conditions.

Thus, aside from a more detailed representation of soil water movement, a more ‘‘biological’’ representation
of vegetation-related processes seems to be the most important control for consistent simulation of energy
and water fluxes in the soil-plant system. In particular, further advances in the representation of leaf area
dynamics and of root/soil moisture interactions seem to be the most promising starting points for improv-
ing the simulation of feedbacks between underground, land surface, and atmosphere in fully coupled
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hydrological and atmospheric models. It should, however, be considered that changes in the land-surface
model may have considerable impacts on the coupling with the atmosphere via parameterizations of the
atmospheric surface layer. A full assessment of the impact is only possible by testing the performance of
fully coupled simulations which will be the next natural step after demonstrating improvements of the
land-surface model.

Appendix A: Reduction Functions of Root Depth Growth

Wang [1997] gives the following soil temperature (fT) and soil moisture (fh) dependencies of root
elongation:

fT ðzÞ5
2ðTðzÞ2TminÞaðTopt2TminÞa2ðTðzÞ2TminÞ2a

ðTopt2TminÞ2a

where a5ln 2 ln ðTmax2TminÞ=ðTopt2TminÞ
� �

and

fhðzÞ5min 1; 4 � hðzÞ2hpwp

hfc2hpwp

� �

Here z is the depth of the root system. For wheat the three cardinal temperatures Tmin, Topt, and Tmax are 0,
25, and 35�C, respectively. When the relative extractable soil water content in the deepest root layer is less
than 25% of the total extractable soil water, the root extension rate will be reduced linearly.
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